146. Herstellung substituierter 1,6-Methano[10]annulene durch Cycloadditionsreaktionen des 1*H*-Cyclopropabenzols

von Richard Neidlein*, Matthias Kohl¹) und Walter Kramer

Pharmazeutisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 364, D-6900 Heidelberg

(20. VII. 89)

Synthesis of Substituted 1,6-Methano[10]annulenes by Cycloadditions of 1H-Cyclopropabenzene

Diels-Alder reactions of 1*H*-cyclopropabenzene (1) with electron-poor dienes, leading to substituted 1,6-methano[10]annulenes, are described.

Die Reaktivität des 1*H*-Cyclopropabenzols (1) wird durch die grosse Spannungsenergie von 68 kcal/mol [1] [2] des Ringsystems bestimmt. Theorie [2] und Experiment [3] stimmen darin überein, dass das HOMO von 1 an der Brücke (C(1a)/C(5a)) und an der (C(3)–C(4))-Bindung grosse *Hückel*-Koeffizienten aufweist. Mit elektronenarmen Dienen [4] reagiert 1 unter Erhalt der Methano-Brücke und ist somit ein interessanter Baustein zur Darstellung methano-überbrückter Annulene. So führen die Umsetzungen von 1 mit α -Pyron [5a], 1,2,4,5-Tetrazin-3,6-dicarbonsäure-dimethylester [5a,b] und substituierten 1,2,4-Triazinen [5c] zu nicht isolierbaren Zwischenstufen, die unter Abspaltung von CO₂ bzw. N₂ in 1,6-Methano[10]annulen, Tricyclo[4.4.1.0^{1,6}]-3,4-diazadeca-2,4,7,9-tetraen-2,5-dicarbonsäure-dimethylester sowie 3,8-Methanoaza[10]annulen-Derivate übergehen. Isolierbare (1:1)-Cycloaddukte erhält man dagegen bei Verwendung der Diene 1,3-Diphenylisobenzofuran [5d], 4,5-Dibromo-*o*-benzochinon [5e] und Butadien [5a].

Ausgehend von 1*H*-Cyclopropabenzol (1) beschreiben wir neue Synthesewege zur Darstellung substituierter 1,6-Methano[10]annulen-Derivate und grenzen die dienophilen Eigenschaften von 1 ein.

Im Einklang mit den Berechnungen von Apeloig und Arad [2] setzt sich 1 mit den reaktiven Dienen Tetracyclon (2a), Phencyclon (2c) sowie anderen Cyclopentadienonen 2b²), 2d-g entweder in einem symmetrie-erlaubten $[\pi_s^6 + \pi_s^4]$ - oder in einem $[\pi_s^2 + \pi_s^4]$ -Pro-

¹) Teil der geplanten Dissertation von M. K.

²) Herstellung von **2b** ausgehend von 1,3-Diphenylpropan-2-on und 4,4'-Diethylbenzil analog [6]; violette Kristalle, Schmp. 167° (EtOH).

Schema 1

Tab. 1. Reaktionsbedingungen und Ausbeuten der Umsetzungen von 1 mit 2a-g

Edukt	R ⁱ	R ²	R ³	R ⁴	Reaktions- temp. [°]	Reaktions- zeit	Ausbeute [%]	Pro- dukt
2a	Ph	Ph	Ph	Ph	1. 20	6 d		
					2. 55	36 h	50	5a ^a)
2b	Ph			Ph	1.20	6 d		
		$p - C_6$	H₄-Et		2.55	36 h	42	5b
2c	Ph	/	X	Ph	1. 20	6 d		
		\bigcirc	\diamond		2. 55	36 h	70	5c
2d	Ph			Ph	55	60 h	7	5d
2e	Et	Ph	Ph	Et	20	15 d	21	5e
2e	Et	Ph	Ph	Et	65	18 h	87	5e
2f	Me	Ph	Ph	Me	65	24 h	76	5f
2g	CO ₂ Me	Ph	Ph	CO ₂ Me	20	12 h	91	5g

a) Wie wir nachträglich erfuhren, wurde diese Umsetzung im Arbeitskreis von Prof. E. Vogel bereits früher durchgeführt [7].

zess zu den Cycloaddukten **3a-g** um, die unter CO-Abspaltung und nachfolgender Aromatisierung in guten Ausbeuten 1,6-Methano[10]annulene **5a-g** ergeben (*Schema 1* und *Tab. 1*).

Alle Cyclopentadienone 2a-g reagieren mit Ausnahme von 2d in THF schon bei Raumtemperatur mit 1. Der Versuch, die Primäraddukte 3a-g bei tiefer Temperatur zu isolieren, gelingt nur im Falle des Ketons 2e. Der als farbloser Feststoff anfallende, bei tiefen Temperaturen wochenlang beständige Tetracyclus 3e geht sowohl beim Schmelzen (Schmp. 107-109°) als auch in siedendem THF unter CO-Extrusion in das Annulen 5eüber (*Fig.*).

Bei der Cycloaddition können prinzipiell *endo*- und *exo*-Konfigurationsisomere mit *syn*- (*endo*, **4**) bzw. *anti*-Anordnung (*exo*, **3e**) von C(9) und C(10) entstehen. Die Struktur

Figure. ¹³C-NMR-Spektrum (62,89 MHz) von **3e** in $(D_g/THF$ (Ausschnitt). a) Grundspektrum; NOE-Differenzspektren nach Einstrahlung von b) H_b-C(9), c) H_a-C(9). (S = Solvens).

von 3e wurde mit Hilfe selektiver ¹³C{¹H}-NOE-Differenzspektroskopie geklärt³). Die bei Bestrahlung von H_b-C(9) zu beobachtenden NOE's (*Fig.*, *b*) an C(2)/C(3) sowie C(1')/C(1") deuten auf die räumliche Nähe dieser Atome hin und sprechen für eine Wannenkonformation des Cyclohexen-Rings, welche durch die zu C(9) anti-orientierte CO-Gruppe erzwungen wird. Ein indirekter, durch die *o*-Ph-Protonen vermittelter NOE (Spindiffusion) führt zu einer Abnahme der Signalintensität von (C(2')/C(6')/C(2")/C(6")). Die Bestrahlung von H_a-C(9) bewirkt ausser an C(4a)/C(8a) ebenfalls einen – nunmehr negativen – NOE an C(2)/C(3) (quasi-lineare 3-Spin-Systeme, H_a-C(8), H_b-C(8), C(2)/C(3) [9]; *Fig.*, *c*).

Die ¹³C-chemische Verschiebung von C(4a)/C(8a), welche zwischen den Werten für typische Norcaradien- und Cycloheptatrien-Systemen liegt (35–45 bzw. 120–130 ppm) [10], deutet auf ein Gleichgewicht zwischen der Cycloheptatrien- und der Norcaradien-Form von **3e** hin, das bei tiefer Temperatur zugunsten des Trien-Strukturanteils verschoben wird (Temperaturabhängigkeit des (C(4a)/C(8a))-Signals; 293 K: $\delta = 80,1$; 173 K: $\delta = 87,9$).

Thiophen-dioxide 6a-d mit elektronenanziehenden Substituenten reagieren mit 1 in THF zu den Aromaten 7a-d (*Schema 2* und *Tab. 2*).

Das *in situ* aus 3,4-Dibromotetrahydrothiophen-1,1-dioxid generierte Thiophen-dioxid **6e** (Synthese: *a*) Pyridin, Et₃N 70–80°; *b*) NaOH (fest), THF abs., $0-20^{\circ}$) liefert bei

³) Für experimentelle Einzelheiten und Literatur s. z. B. [8].

Edukt	R ¹	\mathbb{R}^2	R ³	R ⁴	Reaktions- temp. [°]	Reaktions- zeit	Ausbeute [%]	Pro- dukt
6a	Cl	Cl	Cl	Cl	1. 20	20 h		
					2.60	5 d	35	7a ^a)
6b	Br	Br	Br	Br	1.20	20 h		,
					2.60	5 d	25	7b
6c	Me	Br	Br	Me	1.20	20 h		
					2.60	60 h	5	7c
6d	н	Ph	Ph	н	20	20 h		
					60	5 d	5	7d
6e	н	н	н	Н	70-80	4 h	0	7e
6e	н	н	н	Н	20	40 h	0	7e
6f	Ph	PhCO ₂	PhCO ₂	Ph	20	20 h	0	7f
			-		60	5 d		

Tab. 2. Reaktionsbedingungen und Ausbeuten der Umsetzungen von 1 mit 6a-f

70–80° ausschliesslich Polymere, während im Fall b die Dimerisierung von **6e** mit anschliessender SO₂-Abspaltung zum 3a,7a-Dihydrobenzothiophen-1,1-dioxid führt. In keinem der beiden Versuche konnte **7e** auch nur in Spuren nachgewiesen werden.

Bereits Ende der sechziger Jahre wurde aus Cyclopropabenzol 1 und einem 10fachen Überschuss an α -Pyron (Et₂O, 40 h, 80°) nach GC-Aufarbeitung 1,6-Methano[10]annulen (7e) [5a] in 10% Ausbeute erhalten. Der Einbau elektronenanziehender Substituenten am Heterocyclus 8 sollte die Reaktionsgeschwindigkeit so stark erhöhen, dass auch bei niedrigeren Temperaturen eine Reaktion eintritt, um so die bei 80° merkliche radikalische Oligomerisierung von 1 zurückzudrängen.

In Übereinstimmung mit diesen Überlegungen ergeben die Umsetzungen der α -Pyrone **8a–f** mit einem zweifachen Überschuss an **1** in THF bei 50–55° neben Dimeren des Cyclopropabenzols **1** Verbindungen **9a–f** (*Schema 3* und *Tab.3*).

Edukt	R ¹	R ²	Reaktionszeit [h]	Ausbeute [%]	Produkt
8a	Н	CO ₂ Me	80	16	9a [11]
8b	н	CO_2Et	80	18	9b -
8c	Br	CO_2Me	64	32	9c
8d	Br	CO_2Et	70	30-35	9d
8 e ^a)	Cl	CO ₂ Et	51	34	9e
8f	Н	PhCO	48	5	9f
9) TT (.11		- 21/	i di		

Tab. 3. Reaktionsbedingungen und Ausbeuten der Umsetzungen von 1 mit 8a-f

^a) Herstellung von 8e aus 5-oxo-2*H*-pyran-3-carbonsäure-ethylester und Cl₂ analog [12]; farblose Kristalle, Schmp. 65–67°. Dass entgegen den Erwartungen **9f** nur in schlechten Ausbeuten – neben schwer trennbaren und charakterisierbaren Oligomeren – zugänglich ist, liegt wahrscheinlich an der hohen Elektrophilie der Keto-Funktion, die zur Öffnung des Drei-Rings führen kann [4].

Der BASF AG, dem Verband der Chemischen Industrie-Fonds der Chemie sowie der Deutschen Forschungsgemeinschaft danken wir für besondere Unterstützung unserer Untersuchungen, Frau G. Baumann für ihre Mithilfe bei der Aufnahme der ¹H- und ¹³C-NMR-Spektren, den Herren H. Rudy, P. Weyrich und G. Beutel für Massenspektren und Elementaranalysen, der Bayer AG und der Hoechst AG für die Lieferung von Chemikalien sowie der Fa. ICN Biomedicals GmbH, Eschwege, für die kostenlose Lieferung von Kieselgel.

Experimenteller Teil

Allgemeines. Schmp. auf einem Reichert-Schmelzpunkt-Mikroskop, Schmelzapparatur nach Tottoli der Fa. Büchi, Zürich, nicht korrigiert. SC: Säulen gepackt mit Kieselgel der Fa. ICN Biomedicals GmbH, Eschwege (Korngrösse: 0,063–0,2 mm). UV/VIS: Carl-Zeiss DMR 4. IR: Perkin-Elmer-Gerät 325. MS: Varian MAT-311 A. Elementaranalysen: Heraeus, autom. C-, H- und N-Analysator. ¹H- und ¹³C-NMR-Spektren: Bruker WM 250; chemische Verschiebungen in δ -Werten rel. zu TMS als internem Standard; Unterscheidung der CH_n-Atome durch J-moduliertes Spin-Echo bzw. 'gated decoupling'. H_a der Methano-Brücke stets über der unsubstituierten Ring-Hälfte.

1,4-Diethyl-1,4-dihydro-2,3-diphenyl-1,4:4a,8a-dimethanonaphthalin-10-on (3e). *2,5-Diethyl-2,3-diphenylcy-clopenta-2,4-dienon* (2e) (1,12 g, 3,89 mmol) wird unter N₂ in 10 ml H₂O-freiem Et₂O gelöst und unter Eiskühlung mit 0,9 g (10 mmol) *1*H-*Cyclopropabenzol* (1) versetzt. Nach 5 h bei 0° und 15 h bei RT. kühlt man wiederum auf 0° ab, fügt etwas Hexan abs. hinzu und lässt bei -30° kristallisieren: 0,9 g (61 %), farblose Kristalle. Schmp. 107–109° (Zers.). UV/VIS (MeCN): 252 (4,37), 346 (2,65, sh). IR (KBr): 1759 (C=O). ¹H-NMR (250, 13 MHz, CDCl₃): 0,07 (d, ²*J* = 8,6, H_a-C(9)); 0,73 (t, ³*J* = 7,4, 2 CH₃CH₂); 2,03 (q, ³*J* = 7,4, 2 CH₃CH₂); 3,13 (d, ²*J* = 8,6, H_b-C(9)); 6,55 (*m*c, H-C(5), H-C(8)); 6,81 (*m*c, H-C(6), H-C(7)); 7,27 (*m*c, 2 Ph). ¹³C-NMR (62,89 MHz, CDCl₃): 9,37 (CH₃CH₂); 3,59 (CH₃CH₂); 32,1 (C(9)); 65,8 (C(1), C(4)); 80,1 (C(4a), C(8a)); 122,8 (C(5), C(8)); 127,4 (C(6), C(7)); 128,8 (C(2), C(6'), C(2''), C(6'')); 135,6 (C(1), C(1'')); 140,4 (C(2), C(3)); 174,9 (C(10))⁴). MS (80 eV): 350 (44, [*M* - CO]⁺), 321 (100, [*M* - COCH₂CH₃]⁺). Anal. ber. für C₂₈H₂₆O (378,513): C 88,85, H 6,92; gef.: C 88,96, H 7,15.

2,3,4,5-*Tetraphenylbicyclo*[4.4.1]undeca-1,3,5,7,9-pentaen (**5a**). Einer Lsg. von 1,92 g (5 mmol) 2,3,4,5-*Tetraphenylcyclopenta-2,4-dienon* (**2a**) in 40 ml H₂O-freiem THF werden N₂ 0,9 g (10 mmol) 1 hinzugetropft. Man rührt 6 d bei RT., anschliessend 36 h bei 55°, zieht das Lsgm. i. V. ab und reinigt den Rückstand mittels SC (Kieselgel, Hexan/CH₂Cl₂ 10:1). Die gelbe Fraktion wird aus Hexan umkristallisiert: 1,12 g (50%), gelbe Kristalle. Schmp. 162°[7]. UV/VIS (CH₂Cl₂): 280 (4,74), 331 (4,00), 396 (2,62, sh). ¹H-NMR (250,13 MHz, CDCl₃): 0,21 (d, ²J = 9,0, H_a-C(11)); 0,48 (d, ²J = 9,0, H_b-C(11)); 6,71-7,13 (24 H). ¹³C-NMR (62,89 MHz, CDCl₃): 36,7 (C(11)); 115,7 (C(1), C(6)); 124,9, 126,0, 126,3, 126,8, 127,0, 131,0, 131,7, 132,5 (tert. C-Atome); 139,4, 139,4, 141,1, 142,4 (quart. C-Atome). MS (80 eV): 446 (100, M^+). Anal. ber. für C₃₅H₂₆ (446,59): C 94,13, H 5,87; gef.: C 94,32, H 6,10.

3,4-Bis(4-ethylphenyl)-2,5-diphenylbicyclo[4.4.1]undeca-1,3,5,7,9-pentaen (**5b**). Eine Lsg. von 2,2 g (5 mmol) 3,4-Bis(4-ethylphenyl)-2,5-diphenylcyclopenta-2,4-dienon (**2b**) in 40 ml THF abs. wird unter N₂ mit 0,9 g (10 mmol) 1 versetzt. Nach 6 d bei RT. und 36 h bei 55° wird das Lsgm. i. V. abgedampft und der Rückstand mittels SC (Kieselgel, Hexan/Et₂O 15:1) gereinigt: 1,05 g (42%) **5b**, hellgelbe Kristalle. Schmp. 167–169° (Hexan). UV/VIS (MeCN): 277 (4,67), 334 (3,98, sh), 421 (2,61, sh). ¹H-NMR (250,13 MHz, CDCl₃): 0,2 (d, ²J = 8, 7, H_a-C(11)); 0,98 (t, ³J = 7,6, 2 CH₃CH₂); 2,34 (q, ³J = 7,6, 2 CH₃CH₂); 6,64 (mc, 2 C₆H₄Et); 6,92 (mc, H-C(8), H-C(9) oder H-C(7), H-C(10)); 7,12–7,19 (m, 2 Ph, H-C(8), H-C(9) oder H-C(7), H-C(10)); 13c-NMR (62,89 MHz, CDCl₃): 15,5 (CH₃CH₂); 2,83 (CH₃CH₂); 36,8 (C(11)); 116,0 (C(1), C(6)); 125,4, 126,2, 126,6, 132,1, 131,7, 132,4 (tert. C-Atome); 139,2, 139,6, 139,7, 140,5, 141,6 (quart. C-Atome). MS (80 eV): 502 (100, *M*⁺). Anal. ber. für C₃9H₃₄ (502,70): C 93,18, H 6,82; gef.: C 93,22, H 7,06.

⁴) Die Zuordnung der sp²-hybridisierten C-Atome basiert auf der Grundlage von selektiven ¹³C{¹H}-Entkopplungsexperimenten sowie auf der Analyse der Aufspaltungsmuster im gekoppelten ¹³C-NMR-Spektrum (vgl. [13]).

9,16-Diphenyl-10,15-methanocyclodeca[1]phenanthren (5c). Einer Suspension von 1,22 g (3,93 mmol) 1,3-Diphenyl-2H-cyclopenta[1]phenanthren-2-on (2c) in 32 ml H₂O-freiem THF fügt man unter N₂ 0,71 g (7,89 mmol) 1 hinzu, rührt 6 d bei RT. und erhitzt anschliessend 36 h auf 55°. Nach Abdampfen des Lsgm. und SC-Reinigung (Kieselgel, Hexan/CH₂Cl₂ 10:2) erhält man 5c: 1,22 g (70%), zitronengelbe Kristalle. Schmp. 266° (Hexan/CH₂Cl₂). UV/VIS (MeCN): 253 (4,57), 286 (4.41, sh), 307 (4,49), 372 (3,77). ¹H-NMR (250,13 MHz, CDCl₃): 1,62 ($d, {}^{2}J = 9,8, H_{b}-C(17)$); 2,03 ($d, {}^{2}J = 9,8, H_{a}-C(17)$); 6,03 (mc, H-C(10), H-C(11)); 7,06–7,25 (m, 2 Ph, H–C(3), H–C(6) oder H–C(2), H–C(7)); 7,45 (mc, H-C(3), H-C(6) oder H–C(2), H–C(7)); 7,45 (mc, H-C(3), H-C(6), $d^{2}J = 8,4, {}^{4}J = 1,1, H-C(1), H-C(8)$); 8,59 ($d, {}^{3}J = 8,1, H-C(4), H-C(5)$). ¹³C-NMR (62,89 MHz, CDCl₃): 36,0 (C(17)); 122,1, 125,5, 126,1, 126,5, 128,3, 130,2, 132,7, 133,7 (tert. C-Atome); 130,6, 130,8, 132,3, 133,0, 136,9, 142,2 (quart. C-Atome). MS (80 eV): 444 (100, M^+). Anal. ber. für C₃₅H₂₄: 444.1871; gef.: 444.1864 (MS). Anal. ber. für C₃₅H₂₄ (444,58): C 94,56, H 5,44; gef.: C 93,97, H 5,59.

7,14-Diphenyl-8,13-methanocyclodeca[a]acenaphthylen (5d). Verbindung 2d (1,78 g, 5 mmol) wird in 40 ml H₂O-freiem THF suspendiert und unter N₂ mit 0,9 g (10 mmol) 1 versetzt. Nach 60 h bei 55° lässt man auf RT. abkühlen, saugt nicht umgesetztes 2d (1,35 g) ab, entfernt das Lsgm. i. V. und reinigt mittels SC (Kieselgel, Hexan/CH₂Cl₂ 10:2): 145 mg (7%) 5d, orange Kristalle. Schmp. 260° (Hexan/CH₂Cl₂). UV/VIS (MeCN): 260 (4,54), 302 (4,46), 347 (4,56), 472 (3,69). ¹H-NMR (250,13 MHz, CDCl₃): 0,01 (d, ²J = 9,3, H_a-C(15)); 0,56 (d, ²J = 9,3, H_b-C(15)); 6,74 (d, J = 7,1, 2 H); 6,96 (mc, 2 H); 7,06 (mc, H--C(10), H-C(11)); 7,21-7,27 (m, 4 H); 7,37 (mc, H--C(9), H--C(12)); 7,48 (dt, J = 7,5, 1,2, 2 H); 7,61 (d, J = 8,2, 2 H); 7,71 (m, 2 H); 8,30 (m, 2 H). MS (80 eV): 418 (100, M^+). Anal. ber. für C₃₃H₂₂: 418,1722; gef.: 418, 1723 (MS). Anal. ber. für C₃₃H₂₂ (418, 539): C 94,70, H 5,30; gef.: C 93,94, H 5,55.

2,5-Diethyl-3,4-diphenylbicyclo[4.4.1]undeca-1,3,5,7,9-pentaen (**5e**). Zu einer Lsg. von 3,17 g (11 mmol) 2,5-Diethyl-3,4-diphenylcyclopenta-2,4-dienon (**2e**) in 20 ml H₂O-freiem THF gibt man unter N₂ bei 65° 1,98 g (22 mmol) **1**. Nach 18 h bei dieser Temp. wird das Lsgm. entfernt und der Rückstand mittels SC (Kieselgel, Hexan) gereinigt. Kristallisation aus Hexan liefert **5e** (3,35 g; 87%) als hellgelbe Kristalle. Schmp. 120°. UV/VIS (MeCN); 274 (4,67), 318 (3,85), 395 (2,40, sh). ¹H-NMR (250,13 MHz, CDCl₃): -0,29 (d, ²J = 8.7, H₈-C(11)); 0,24 (d, ²J = 8.7, H_b-C(11)); 1.06 (t, ³J = 7,5, 2CH₃CH₂); 2,63 (mc, ³J = 7,5, 2CH₃CH₂); 6,98 (mc, 2 Ph); 7,15 (mc, H-C(8), H-C(9)); 7,62 (mc, H-C(7), H-C(10)). ¹³C-NMR (62,89 MHz, CDCl₃): 17,2 (CH₃CH₂); 2,43 (CH₃CH₂); 37,0 (C(11)); 113,0 (C(1), C(6)); 125,3, 126,5, 126,6, 127,1, 131,4 (tert. C-Atome); 139,0, 140,5, 143,3 (quart. C-Atome). MS (80 eV): 350 (36, M⁺), 321 (100, [M - C₂H₃]⁺). Anal. ber. für C₂₇H₂₆ (350,505): C 92,52, H 7,48; gef.: C 92,38, H 7,61.

2,5-Dimethyl-3,4-diphenylbicyclo[4.4.1]undeca-1,3,5,7,9-pentaen (**5f**). Eine Lsg. von 1,7 g (6,54 mmol) 2,5-Dimethyl-3,4-diphenylcyclopenta-2,4-dienon (**2f**; steht im Gleichgewicht mit dem Dimeren) in 20 ml H₂O-freiem THF wird bei 65° unter N₂ mit 1,18 g (13,1 mmol) 1 versetzt und 24 h bei dieser Temp. gerührt. Nach Abdampfen des Lsgm. i.V. und Reinigung des Rückstandes mittels SC (Kieselgel, Hexan/Et₂O 20:1) isoliert man 1,6 g (76%) **5f** als hellgelbe Kristalle. Schmp. 118° (Hexan). UV/VIS (MeCN): 270 (4,63), 318 (3,79), 365 (2,32, sh). ¹H-NMR (250,13 MHz, CDCl₃): -0,36 ($d,^2J = 8,8, H_a-C(11)$); 0,25 ($d,^2J = 8,8, H_b-C(11)$); 2,24 ($s, 2 \text{ CH}_3$); 6,89–7,08 (m, 2 Ph); 7,19 (mc, H–C(8), H–C(9)); 7,62 (mc, H–C(7), H–C(10)). ¹³C-NMR (62,89 MHz, CDCl₃): 18,2 (CH₃); 36,5 (C(11)); 114,5 (C(1), C(6)); 125,3, 126,4, 126,8, 127,2, 131,1 (tert. C-Atome); 132,2, 140,8, 140,1 (quart. C-Atome). MS (80 eV): 322 (100, M^+), 307 (98 [$M - \text{CH}_3$]⁺). Anal. ber. für C₂₅H₂₂ (322,449): C 93,12, H 6,88; gef.: C 93,36, H 6,98.

3,4-Diphenylbicyclo[4.4.1]undeca-1,3,5,7,9-pentaen-2,5-dicarbonsäure-dimethylester (**5**g). 5-Oxo-2,3-diphenylcyclopentadien-1,4-dicarbonsäure-dimethylesters (**2**g; 1 g, 2,87 mmol) in 25 ml H₂O-freiem THF wird unter N₂ mit 0,51 g (5,66 mmol) **1** versetzt und 12 h bei RT. gerührt. Nach Abdampfen des Lsg. i. V. und SC-Reinigung (Kieselgel, Hexan/Et₂O 3:2) isoliert man **5**g: 1,07 g (91%), hellgelbe Kristalle. Schmp. 146° (Et₂O/CH₂Cl₂). UV/VIS (MeCN): 266 (4,63), 324 (3,81, sh), 390 (2,46, sh). IR (KBr): 1723 (C=O). ¹H-NMR (250,13 MHz, CDCl₃): 0,02 (d, ²J = 9,0, H_b-C(11)); 0,16 (d, ²J = 9,0, H_a-C(11)); 4,52 (s, 2 CH₃); 7,04 (mc, 2 Ph); 7,18 (mc, H-C(8), H-C(9)); 7,59 (mc, H-C(7), H-C(10)). ¹³C-NMR (62,89 MHz, CDCl₃): 35,6 (C(11)); 52,1 (CH₃); 112,9 (C(1),C(6)); 126,4, 126,8, 128,6, 129,4, 131,1 (tert. C-Atome); 134,3, 139,8, 140,6, 167,6 (quart. C-Atome). MS (80 eV): 410 (45, M^+), 319 (100, [$M - (CO_2CH_3 + HOCH_3)$]⁺). Anal. ber. für C₂₇H₂₂O₄ (410,468): C 79,01, H 5,40; gef.: C 79,07, H 5,57.

2,3,4,5-Tetrachlorobicyclo[4.4.1]undeca-1,3,5,7,9-pentaen (7a). Eine Lsg. von 1,27 g (5 mmol) 2,3,4,5-Tetrachlorothiophen-1,1-dioxid (6a) in 15 ml H₂O-freiem THF wird unter N₂ mit 0,9 g (10 mmol) 1 versetzt. Man rührt 20 h bei RT. und erhitzt anschliessend 5 d auf 60°. Das Lsgm. wird i. V. entfernt und der Rückstand mittels SC (Kieselgel, Hexan/CH₂Cl₂ 10:1) gereinigt: 0,49 g (35%) 7a als gelbe Kristalle. Schmp. 98° (Hexan). UV/VIS (MeCN): 248 (4,08, sh), 288 (4,64), 340 (3,68). ¹H-NMR (250,13 MHz, CDCl₃): -0,06 (dt, ²J = 10,7, ⁴J = 1,4, H_b-C(11)); 0,13 (d, ²J = 10,7, H_a-C(11)); 7,14 (mc, H-C(8), H-C(9)); 7.70 (mc, H-C(7), H-C(10)). ¹³C-NMR

(62,89 MHz, CDCl₃): 33,3 (C(11)); 114,5 (C(1), C(6)); 125,3, 132,5 (quart. C-Atome); 130,2, 131,1 (tert. C-Atome). MS (80 eV): 284/282/280/278 (31,9, M^+), 247/245/243 (100, $[M - Cl]^+$). Anal. ber. für C₁₁H₆Cl₄ (279,980): C 47,19, H 2,16; gef.: C 47,15, H 2,30.

2,3,4,5-Tetrabromobicyclo[4.4.1]undeca-1,3,5,7,9-pentaen (**7b**). 2,3,4,5-Tetrabromothiophen-1,1-dioxid (**6b**; 2,29 g, 5 mmol) und 0,9 g (10 mmol) **1** werden analog der Darstellung von **7a** umgesetzt: 573 mg (25%) **7b** als dunkelgelbe Kristalle. Schmp. 136–137° (Hexan). UV/VIS (MeCN): 232 (4,08, sh), 260 (4,34), 305 (4,39), 360 (3,54), 427 (2,60, sh). ¹H-NMR (250,13 MHz, CDCl₃): 0,13 (dt, ²J = 10,5, ⁴J = 1,5, H_b-C(11)); 0,69 (d, ²J = 10,5, H_a-C(11)); 7,04 (mc, H–C(8), H–C(9)); 7,55 (mc, H–C(7), H–C(10)). ¹³C-NMR (62,89 MHz, CDCl₃): 35,1 (C(11)); 115,6 (C(2), C(5)); 120,0 (C(1), C(6)); Zuordnung: positiver NOE bei Bestrahlung von H_a-C(11); 130,1 (C(3), C(4)); 129,8, 134,0 (tert. C-Atome). MS (80 eV): 462/460/458/456/454 (9, M^+), 138 (100, $[M - 4Br]^+$). Anal. ber. für C₁₁H₆Br₄ (457,785): C 28,86, H 1,32; gef.: C 28,65, H 1,53.

3,4-Diphenylbicyclo[4.4.1]undeca-1,3,5,7,9-pentaen (7d). 3,4-Diphenylthiophen-1,1-dioxid (6d; 1,29 g, 5 mmol) und 0,9 g (10 mmol) 1 werden analog der Darstellung von 7a umgesetzt. Der Rückstand wird an Kieselgel (Hexan/CH₂Cl₂ 4:1.5) chromatographiert, die erhaltene gelbe Fraktion mittels SC (Kieselgel, Cyclohexan) gereinigt: 74 mg (5%) 7d, hellgelbe Kristalle. Schmp. 131° (Hexan). UV/VIS (MeCN): 267 (4,60), 310 (3,85, sh). ¹H-NMR (250,13 MHz, CDCl₃): 0,02 (br. s, 2 H–C(11)); 7,05 (mc, H–C(8), H–C(9)); 7,12 (mc, 2 Ph); 7,43 (s, H–C(2), H–C(5)); 7,47 (mc, H–C(7), H–C(10)). MS (80 eV): 294 (100, M^+). Anal. ber. für C₂₃H₁₈ (294,395): C 93,84, H 6,16; gef.: C 93,82, H 6,24.

Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaen-3-carbonsäure-methylester (**9a**; racemisch). 2-Oxo-2H-pyran-5-carbonsäure-methylester (**8a**; 0,77 g, 5 mmol) in 12 ml H₂O-freiem THF wird bei RT. unter N₂ mit 0,9 g (10 mmol) 1 versetzt und anschliessend 80 h auf 50–55° erhitzt. Das Lsgm. wird i. V. abgezogen und der Rückstand mittels SC (Kieselgel, Hexan/Et₂O 2:1) gereinigt. Die eluierte hellgelbe Fraktion wird erneut chromatographiert (Kieselgel, Hexan/Et₂O 10:1) und der Rückstand aus Hexan kristallisiert: 0,16 g (16%), hellgelbe Kristalle. Schmp. 35–36° [11].

Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaen-3-carbonsäure-ethylester (**9b**; racemisch). 2-Oxo-2H-pyran-5-carbonsäure-ethylester (**8b**; 1,95 g, 11.6 mmol) in 25 ml H₂O-freiem THF und 2,05 g (22,8 mmol) **1** werden analog der Darstellung von **9a** umgesetzt. Nach SC-Reinigung (Kieselgel, Hexan/Et₂O/CH₂Cl₂ 10:1:1.5) und folgender Kugelrohr-Destillation (100–105°/10⁻³ Torr) isoliert man 0,45 g (18%) **9b** als hellgelbes Öl. UV/VIS (MeCN): 260 (4,68), 307 (3,85), 396 (2,61, sh). IR (Film): 1711 (C=O). ¹H-NMR (250,13 MHz. CDCl₃): -0,30 (dt, ²J = 8,9, ⁴J = 1,0, H–C(11)); -0,22 (dt, ²J = 8,9, ⁴J = 1,0, H–C(11)); 1,42 (t, ³J = 7,2, CH₃CH₂); 4,41 (q, ³J = 7,2, CH₃CH₂); 7,11 (mc, H–C(8), H–C(9)); 7,41–7,54 (H–C(5), H–C(7), H–C(10)); 7,93 (d, ³J = 9,3, H–C(4)); 8,03 (br. s, H–C(2)). ¹³C-NMR (62,89 MHz, CDCl₃): 14,4 (CH₃); 34,9 (C(11)); 61,2 (CH₃CH₂); 113,3 (C(1)); 118,5 (C(6)); 126,4, 126,7, 127,5, 128,7, 129,2, 130,1, 132,4 (tert. C-Atome); 168,6 (CO); (C(3) verdeckt). MS (80 eV): 214 (28, M⁺), 141 (100, [M – CO₂CH₂CH₃]⁺). Anal. ber. für C₁₄H₁₄O₂: 214,0994; gef.: C 214,0994 (MS).

5-Bromobicyclo[4.4.1]undeca-1,3,5,7,9-pentaen-3-carbonsäure-methylester (9c; racemisch). 3-Bromo-2-oxo-2H-pyran-5-carbonsäure-methylester (8c; 1,15 g, 5 mmol) in 12 ml H₂O-freiem THF und 0,9 g (10 mmol) 1 werden analog 8a umgesetzt. Nach SC-Reinigung (Kieselgel, Hexan/CH₂Cl₂ 3:1) erhält man 0,44 g (32%) 9c als hellgelbes Öl. UV/VIS (MeCN): 237 (4,05), 268 (4,56), 320 (3,78), 412 (2,51 sh). IR (Film): 1720 (C=O). ¹H-NMR (250,13 MHz, CDCl₃): -0,26 (dd, $^2J = 9,7$, $^4J = 0,7$, $H_a-C(11)$; -0,19 (dt, $^2J = 9,7$, $^4J = 0,95$, $H_b-C(11)$); 3,95 (s, CH₃); 7,25 (mc, H-C(8), H-C(2)). ¹³C-NMR (62.89 MHz, CDCl₃): 34,1 (C(11)); 52,6 (CH₃); 114,4, 116,3, 117,9, 128,4 (quart. C-Atome); 128,2, 128,8, 129,2, 130,2, 130,4, 132,5 (tert. C-Atome); 167,8 (C=O). MS (80 eV): 280/278 (43, M^+), 199 (87, [M - Br]⁺), 139 (100, C₁₁H₇). Anal. ber. für C₁₃H₁₁O₂Br: 277,9942; gef.: C 277,9941 (MS).

5-Bromobicyclo[4.4.1]undeca-1,3,5,7,9-pentaen-3-carbonsäure-ethylester (9d; racemisch). 3-Bromo-2-oxo-2H-pyran-5-carbonsäure-ethylester (8d; 1,25 g, 5.1 mmol) in 12 ml H₂O-freiem THF und 0,9 g (10 mmol) 1 werden analog der Darstellung von 9a umgesetzt. Nach SC-Reinigung (Kieselgel, Hexan/Et₂O/CH₂Cl₂ 40:3:3) und folgender Kugelrohr-Destillation (125–130°/10⁻³ Torr) erhält man 0,52 g (35%) 9d als gelbes Öl.

5-Chlorobicyclo[4.4.1]undeca-1,3,5,7,9-pentaen-3-carbonsäure-ethylester (9e; racemisch). 3-Chloro-2-oxo-2H-pyran-5-carbonsäure-ethylester (8e; 0,87 g, 4,3 mmol) in 10 ml H₂O-freiem THF und 0,78 g (8,7 mmol) 1 werden analog 8a zur Reaktion gebracht. Nach Chromatographie des Rückstandes (Kieselgel, Hexan/Et₂O/CH₂Cl₂ 10:1:1) und anschliessender Kugelrohr-Destillation (120–125°/10⁻³ Torr) erhält man 0,36 g (34%) 9e als gelbes Öl. UV/VIS (MeCN): 267 (4,51), 320 (3,64), 414 (2,57, sh), 426 (2,28, sh). IR (Film): 1715 (C=O). ¹H-NMR (250,13 MHz, CDCl₃): -0,31 (dd, ²J = 9,8, ⁴J = 0,9, H_a-C(11)); -0,14 (dt, ²J = 9,8, ⁴J = 1,2, H_b-C(11)); 1,43 (t, ³J = 7,1, CH₃CH₂); 4,42 (q, ³J = 7,1, CH₃CH₂); 7,30 (mc, H–C(2)). ¹³C-NMR (62,89 MHz, CDCl₃): 14,4 (CH₃); 33,7 (C(11)); 61,6 (CH₃CH₂); 113,0, 1164, 129,2, 129,5 (quart. C-Atome); 126,4, 128,1, 128,8, 129,1, 130,0, 132,4 (tert. C-Atome); 167.5 (CO). MS (80 eV): 250/248 (49, M^+), 177/175 (100, [$M - CO_2CH_2CH_3$]⁺). Anal. ber. für C₁₄H₁₃O₂Cl: 248,0608; gef.: 248,0606 (MS).

(Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaen-3-yl)-phenyl-keton (9f; racemisch). (2-Oxo-2H-pyran-5-yl)-phenyl-keton (8f; 1 g, 5 mmol) in 10 ml H₂O-freiem THF und 0,9 g (10 mmol) 1 werden analog 8a zur Reaktion gebracht. Nach SC-Reinigung (Kieselgel, Hexan/Et₂O/CH₂Cl₂ 8:2:2) isoliert man 60 mg (5%) 9f als hellgelbe Kristalle. Schmp. 90–92° (Hexan). UV/VIS (MeCN): 248 (4,52), 271 (4,61), 320 (3,98), 385 (2, 88, sh), 419 (2,60, sh). IR (KBr): 1648 (C=O). ¹H-NMR (250,13 MHz, CDCl₃): -0,12 (mc, 2 H–C(11)); 7,14 (mc, H–C(8), H–C(9)); 7,46–7,63 (m, H–C(5), H–C(7), H–C(10), H–C(3'), H–C(4'), H–C(5')); 7,72 (d, ²J = 9,3, H–C(4)); 7,84 (mc, H–C(2'), H–C(6')); 7,97 (br. s, H–C(2)). ¹³C-NMR (62,89 MHz, CDCl₃): 35,2 (C(11)); 113,6 (C(1)); 118,9 (C(6)); 126,7, 127,3, 127,6, 128,2, 128,8, 129,3, 130,1, 130,2, 132,0, 133,9 (tert. C-Atome); 135,1 (quart. C-Atom); 198,4 (CO); (ein quart. C-Atom verdeckt). MS (80 eV): 246 (36, M^+), 141 (32, C₁₁H₉⁺), 105 (100, C₆H₅CO⁺). Anal. ber. für C₁₈H₁₄O: (246,308): C 87,78, H 5,73; gef.: C 88,01, H 6,03.

LITERATURVERZEICHNIS

- L. E. Billups, W. Y. Chow, N. H. Leawell, E. S. Lewis, J. L. Margrave, R. L. Sass, J. J. Shiegh, P. G. Werness, J. L. Wood, J. Am. Chem. Soc. 1975, 95, 7878.
- [2] Y. Apeloig, D. Arad, J. Am. Chem. Soc. 1986, 108, 3241.
- [3] F. Brogli, E. Giovannini, E. Heilbronner, R. Schurter, Chem. Ber. 1973, 106, 961.
- [4] B. Halton, Chem. Rev. 1973, 73, 113; B. Halton, Ind. Eng. Chem. Prod. Res. Dev. 1980, 19, 349; W. E. Billups, Acc. Chem. Res. 1978, 11, 245; W.E. Billups, W. A. Rodin, M. M. Haley, Tethrahedron 1988, 44, 1305.
- [5] a) S. Korte, Dissertation, Universität Köln, 1968; b) R. Neidlein, L. Tadesse, *Helv. Chim. Acta* 1988, 71, 249;
 c) J. C. Martin, J. M. Muchowski, *J. Org. Chem.* 1984, 49, 1040; M.L. Maddox, J.C. Martin, J. M. Muchowski, *Tetrahedron Lett.* 1980, 21, 7; d) U.D. Brinker, H. Wuster, G. Maas, *Angew. Chem. Int. Ed.* 1987, 26, 577; e) E. Vogel, J. Ippen, V. Buch, *Angew. Chem.* 1975, 87, 592; *ibid. Int. Ed.* 1975, 14, 564.
- [6] B. Eistert, A. Langbein, Liebigs Ann. Chem. 1964, 678, 88.
- [7] J. Ippen, Diplomarbeit, Universität Köln, 1972.
- [8] R. Neidlein, W. Kramer, H. Ullrich, Helv. Chim. Acta 1986, 69, 898.
- [9] J. H. Noggle, R. E. Schirmer, 'The Nuclear Overhauser Effect', Academic Press, New York, 1971.
- [10] K. Hannemann, Angew. Chem. 1988, 100, 273; ibid. Int. Ed. 1988, 27, 284 und dort weitere Literaturzitate.
- [11] E. Vogel, J. Sombrock, Tetrahedron Lett. 1974, 17, 1627.
- [12] H. v. Rechmann, W. M. Mills, Chem. Ber. 1904, 37, 3829.
- [13] H. Günther, H. Schmickler, G. Jikeli, J. Magn. Reson. 1973, 11, 344.